|
Go to the first, previous, next, last section, table of contents.
- det(mat[,mod])
-
:: Determinant of mat.
- invmat(mat)
-
:: Inverse matrix of mat.
- return
-
det : expression, invmat : list
- mat
-
matrix
- mod
-
prime
-
det computes the determinant of matrix mat.
invmat computes the inverse matrix of matrix mat.
invmat returns a list [num,den] , where num
is a matrix and num/den represents the inverse matrix.
-
The computation is done over GF(mod) if mod is specitied.
-
The fraction free Gaussian algorithm is employed. For matrices with
multi-variate polynomial entries, minor expansion algorithm sometimes
is more efficient than the fraction free Gaussian algorithm.
[91] A=newmat(5,5)$
[92] V=[x,y,z,u,v];
[x,y,z,u,v]
[93] for(I=0;I<5;I++)for(J=0,B=A[I],W=V[I];J<5;J++)B[J]=W^J;
[94] A;
[ 1 x x^2 x^3 x^4 ]
[ 1 y y^2 y^3 y^4 ]
[ 1 z z^2 z^3 z^4 ]
[ 1 u u^2 u^3 u^4 ]
[ 1 v v^2 v^3 v^4 ]
[95] fctr(det(A));
[[1,1],[u-v,1],[-z+v,1],[-z+u,1],[-y+u,1],[y-v,1],[-y+z,1],[-x+u,1],[-x+z,1],
[-x+v,1],[-x+y,1]]
[96] A = newmat(3,3)$
[97] for(I=0;I<3;I++)for(J=0,B=A[I],W=V[I];J<3;J++)B[J]=W^J;
[98] A;
[ 1 x x^2 ]
[ 1 y y^2 ]
[ 1 z z^2 ]
[99] invmat(A);
[[ -z*y^2+z^2*y z*x^2-z^2*x -y*x^2+y^2*x ]
[ y^2-z^2 -x^2+z^2 x^2-y^2 ]
[ -y+z x-z -x+y ],(-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y]
[100] A*B[0];
[ (-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y 0 0 ]
[ 0 (-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y 0 ]
[ 0 0 (-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y ]
[101] map(red,A*B[0]/B[1]);
[ 1 0 0 ]
[ 0 1 0 ]
[ 0 0 1 ]
- References
-
section
newmat .
Go to the first, previous, next, last section, table of contents.
|