|
Go to the first, previous, next, last section, table of contents.
項順序の設定項は内部では, 各変数に関する指数を成分とする整数ベクトルとして表現され る. 多項式を分散表現多項式に変換する際, 各変数がどの成分に対応するかを 指定するのが, 変数リストである. さらに, それら整数ベクトルの全順序を 指定するのが項順序の型である. 項順序型は, 数, 数のリストあるいは 行列で表現される. 基本的な項順序型として次の 3 つがある.
これらを組み合わせてリストで指定することにより, 様々な消去順序が指定できる. これは,
で指定される.
さらに, 行列により項順序を指定することができる. 一般に,
この時, 2 つのベクトル
項順序型は,
これらの順序の具体的な定義およびグレブナ基底に関する更に詳しい解説は
項順序型の設定の他に, 変数の順序自体も計算時間に大きな影響を与える. [90] B=[x^10-t,x^8-z,x^31-x^6-x-y]$ [91] gr(B,[x,y,z,t],2); [x^2-2*y^7+(-41*t^2-13*t-1)*y^2+(2*t^17-12*t^14+42*t^12+30*t^11-168*t^9 -40*t^8+70*t^7+252*t^6+30*t^5-140*t^4-168*t^3+2*t^2-12*t+16)*z^2*y +(-12*t^16+72*t^13-28*t^11-180*t^10+112*t^8+240*t^7+28*t^6-127*t^5 -167*t^4-55*t^3+30*t^2+58*t-15)*z^4, (y+t^2*z^2)*x+y^7+(20*t^2+6*t+1)*y^2+(-t^17+6*t^14-21*t^12-15*t^11+84*t^9 +20*t^8-35*t^7-126*t^6-15*t^5+70*t^4+84*t^3-t^2+5*t-9)*z^2*y+(6*t^16-36*t^13 +14*t^11+90*t^10-56*t^8-120*t^7-14*t^6+64*t^5+84*t^4+27*t^3-16*t^2-30*t+7)*z^4, (t^3-1)*x-y^6+(-6*t^13+24*t^10-20*t^8-36*t^7+40*t^5+24*t^4-6*t^3-20*t^2-6*t-1)*y +(t^17-6*t^14+9*t^12+15*t^11-36*t^9-20*t^8-5*t^7+54*t^6+15*t^5+10*t^4-36*t^3 -11*t^2-5*t+9)*z^2, -y^8-8*t*y^3+16*z^2*y^2+(-8*t^16+48*t^13-56*t^11-120*t^10+224*t^8+160*t^7 -56*t^6-336*t^5-112*t^4+112*t^3+224*t^2+24*t-56)*z^4*y+(t^24-8*t^21+20*t^19 +28*t^18-120*t^16-56*t^15+14*t^14+300*t^13+70*t^12-56*t^11-400*t^10-84*t^9 +84*t^8+268*t^7+84*t^6-56*t^5-63*t^4-36*t^3+46*t^2-12*t+1)*z, 2*t*y^5+z*y^2+(-2*t^11+8*t^8-20*t^6-12*t^5+40*t^3+8*t^2-10*t-20)*z^3*y+8*t^14 -32*t^11+48*t^8-t^7-32*t^5-6*t^4+9*t^2-t, -z*y^3+(t^7-2*t^4+3*t^2+t)*y+(-2*t^6+4*t^3+2*t-2)*z^2, 2*t^2*y^3+z^2*y^2+(-2*t^5+4*t^2-6)*z^4*y+(4*t^8-t^7-8*t^5+2*t^4-4*t^3+5*t^2-t)*z, z^3*y^2+2*t^3*y+(-t^7+2*t^4+t^2-t)*z^2, -t*z*y^2-2*z^3*y+t^8-2*t^5-t^3+t^2, -t^3*y^2-2*t^2*z^2*y+(t^6-2*t^3-t+1)*z^4, z^5-t^4] [93] gr(B,[t,z,y,x],2); [x^10-t,x^8-z,x^31-x^6-x-y]
変数順序 Go to the first, previous, next, last section, table of contents. |