|
ALINK="#ff0000">
merge
PrototypeMerge is an overloaded name: there are actually two merge functions.template <class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator merge(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template <class InputIterator1, class InputIterator2, class OutputIterator, class StrictWeakOrdering> OutputIterator merge(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, StrictWeakOrdering comp); DescriptionMerge combines two sorted ranges [first1, last1) and [first2, last2) into a single sorted range. That is, it copies elements from [first1, last1) and [first2, last2) into [result, result + (last1 - first1) + (last2 - first2)) such that the resulting range is in ascending order. Merge is stable, meaning both that the relative order of elements within each input range is preserved, and that for equivalent [1] elements in both input ranges the element from the first range precedes the element from the second. The return value is result + (last1 - first1) + (last2 - first2).The two versions of merge differ in how elements are compared. The first version uses operator<. That is, the input ranges and the output range satisfy the condition that for every pair of iterators i and j such that i precedes j, *j < *i is false. The second version uses the function object comp. That is, the input ranges and the output range satisfy the condition that for every pair of iterators i and j such that i precedes j, comp(*j, *i) is false. DefinitionDefined in the standard header algorithm, and in the nonstandard backward-compatibility header algo.h.Requirements on typesFor the first version:
PreconditionsFor the first version:
ComplexityLinear. No comparisons if both [first1, last1) and [first2, last2) are empty ranges, otherwise at most (last1 - first1) + (last2 - first2) - 1 comparisons.Exampleint main() { int A1[] = { 1, 3, 5, 7 }; int A2[] = { 2, 4, 6, 8 }; const int N1 = sizeof(A1) / sizeof(int); const int N2 = sizeof(A2) / sizeof(int); merge(A1, A1 + N1, A2, A2 + N2, ostream_iterator<int>(cout, " ")); // The output is "1 2 3 4 5 6 7 8" } Notes[1] Note that you may use an ordering that is a strict weak ordering but not a total ordering; that is, there might be values x and y such that x < y, x > y, and x == y are all false. (See the LessThan Comparable requirements for a more complete discussion.) Two elements x and y are equivalent if neither x < y nor y < x. If you're using a total ordering, however (if you're using strcmp, for example, or if you're using ordinary arithmetic comparison on integers), then you can ignore this technical distinction: for a total ordering, equality and equivalence are the same. See alsoinplace_merge, set_union, sortCopyright © 1999 Silicon Graphics, Inc. All Rights Reserved. TrademarkInformation
|