subroutine ssvdc(x,ldx,n,p,s,e,u,ldu,v,ldv,work,job,info) integer ldx,n,p,ldu,ldv,job,info real x(ldx,1),s(1),e(1),u(ldu,1),v(ldv,1),work(1) c c c ssvdc is a subroutine to reduce a real nxp matrix x by c orthogonal transformations u and v to diagonal form. the c diagonal elements s(i) are the singular values of x. the c columns of u are the corresponding left singular vectors, c and the columns of v the right singular vectors. c c on entry c c x real(ldx,p), where ldx.ge.n. c x contains the matrix whose singular value c decomposition is to be computed. x is c destroyed by ssvdc. c c ldx integer. c ldx is the leading dimension of the array x. c c n integer. c n is the number of rows of the matrix x. c c p integer. c p is the number of columns of the matrix x. c c ldu integer. c ldu is the leading dimension of the array u. c (see below). c c ldv integer. c ldv is the leading dimension of the array v. c (see below). c c work real(n). c work is a scratch array. c c job integer. c job controls the computation of the singular c vectors. it has the decimal expansion ab c with the following meaning c c a.eq.0 do not compute the left singular c vectors. c a.eq.1 return the n left singular vectors c in u. c a.ge.2 return the first min(n,p) singular c vectors in u. c b.eq.0 do not compute the right singular c vectors. c b.eq.1 return the right singular vectors c in v. c c on return c c s real(mm), where mm=min(n+1,p). c the first min(n,p) entries of s contain the c singular values of x arranged in descending c order of magnitude. c c e real(p). c e ordinarily contains zeros. however see the c discussion of info for exceptions. c c u real(ldu,k), where ldu.ge.n. if joba.eq.1 then c k.eq.n, if joba.ge.2 then c k.eq.min(n,p). c u contains the matrix of left singular vectors. c u is not referenced if joba.eq.0. if n.le.p c or if joba.eq.2, then u may be identified with x c in the subroutine call. c c v real(ldv,p), where ldv.ge.p. c v contains the matrix of right singular vectors. c v is not referenced if job.eq.0. if p.le.n, c then v may be identified with x in the c subroutine call. c c info integer. c the singular values (and their corresponding c singular vectors) s(info+1),s(info+2),...,s(m) c are correct (here m=min(n,p)). thus if c info.eq.0, all the singular values and their c vectors are correct. in any event, the matrix c b = trans(u)*x*v is the bidiagonal matrix c with the elements of s on its diagonal and the c elements of e on its super-diagonal (trans(u) c is the transpose of u). thus the singular c values of x and b are the same. c c linpack. this version dated 03/19/79 . c correction to shift calculation made 2/85. c g.w. stewart, university of maryland, argonne national lab. c c ***** uses the following functions and subprograms. c c external srot c blas saxpy,sdot,sscal,sswap,snrm2,srotg c fortran abs,amax1,max0,min0,mod,sqrt c c internal variables c integer i,iter,j,jobu,k,kase,kk,l,ll,lls,lm1,lp1,ls,lu,m,maxit, * mm,mm1,mp1,nct,nctp1,ncu,nrt,nrtp1 real sdot,t,r real b,c,cs,el,emm1,f,g,snrm2,scale,shift,sl,sm,sn,smm1,t1,test, * ztest logical wantu,wantv c c c set the maximum number of iterations. c maxit = 30 c c determine what is to be computed. c wantu = .false. wantv = .false. jobu = mod(job,100)/10 ncu = n if (jobu .gt. 1) ncu = min0(n,p) if (jobu .ne. 0) wantu = .true. if (mod(job,10) .ne. 0) wantv = .true. c c reduce x to bidiagonal form, storing the diagonal elements c in s and the super-diagonal elements in e. c info = 0 nct = min0(n-1,p) nrt = max0(0,min0(p-2,n)) lu = max0(nct,nrt) if (lu .lt. 1) go to 170 do 160 l = 1, lu lp1 = l + 1 if (l .gt. nct) go to 20 c c compute the transformation for the l-th column and c place the l-th diagonal in s(l). c s(l) = snrm2(n-l+1,x(l,l),1) if (s(l) .eq. 0.0e0) go to 10 if (x(l,l) .ne. 0.0e0) s(l) = sign(s(l),x(l,l)) call sscal(n-l+1,1.0e0/s(l),x(l,l),1) x(l,l) = 1.0e0 + x(l,l) 10 continue s(l) = -s(l) 20 continue if (p .lt. lp1) go to 50 do 40 j = lp1, p if (l .gt. nct) go to 30 if (s(l) .eq. 0.0e0) go to 30 c c apply the transformation. c t = -sdot(n-l+1,x(l,l),1,x(l,j),1)/x(l,l) call saxpy(n-l+1,t,x(l,l),1,x(l,j),1) 30 continue c c place the l-th row of x into e for the c subsequent calculation of the row transformation. c e(j) = x(l,j) 40 continue 50 continue if (.not.wantu .or. l .gt. nct) go to 70 c c place the transformation in u for subsequent back c multiplication. c do 60 i = l, n u(i,l) = x(i,l) 60 continue 70 continue if (l .gt. nrt) go to 150 c c compute the l-th row transformation and place the c l-th super-diagonal in e(l). c e(l) = snrm2(p-l,e(lp1),1) if (e(l) .eq. 0.0e0) go to 80 if (e(lp1) .ne. 0.0e0) e(l) = sign(e(l),e(lp1)) call sscal(p-l,1.0e0/e(l),e(lp1),1) e(lp1) = 1.0e0 + e(lp1) 80 continue e(l) = -e(l) if (lp1 .gt. n .or. e(l) .eq. 0.0e0) go to 120 c c apply the transformation. c do 90 i = lp1, n work(i) = 0.0e0 90 continue do 100 j = lp1, p call saxpy(n-l,e(j),x(lp1,j),1,work(lp1),1) 100 continue do 110 j = lp1, p call saxpy(n-l,-e(j)/e(lp1),work(lp1),1,x(lp1,j),1) 110 continue 120 continue if (.not.wantv) go to 140 c c place the transformation in v for subsequent c back multiplication. c do 130 i = lp1, p v(i,l) = e(i) 130 continue 140 continue 150 continue 160 continue 170 continue c c set up the final bidiagonal matrix or order m. c m = min0(p,n+1) nctp1 = nct + 1 nrtp1 = nrt + 1 if (nct .lt. p) s(nctp1) = x(nctp1,nctp1) if (n .lt. m) s(m) = 0.0e0 if (nrtp1 .lt. m) e(nrtp1) = x(nrtp1,m) e(m) = 0.0e0 c c if required, generate u. c if (.not.wantu) go to 300 if (ncu .lt. nctp1) go to 200 do 190 j = nctp1, ncu do 180 i = 1, n u(i,j) = 0.0e0 180 continue u(j,j) = 1.0e0 190 continue 200 continue if (nct .lt. 1) go to 290 do 280 ll = 1, nct l = nct - ll + 1 if (s(l) .eq. 0.0e0) go to 250 lp1 = l + 1 if (ncu .lt. lp1) go to 220 do 210 j = lp1, ncu t = -sdot(n-l+1,u(l,l),1,u(l,j),1)/u(l,l) call saxpy(n-l+1,t,u(l,l),1,u(l,j),1) 210 continue 220 continue call sscal(n-l+1,-1.0e0,u(l,l),1) u(l,l) = 1.0e0 + u(l,l) lm1 = l - 1 if (lm1 .lt. 1) go to 240 do 230 i = 1, lm1 u(i,l) = 0.0e0 230 continue 240 continue go to 270 250 continue do 260 i = 1, n u(i,l) = 0.0e0 260 continue u(l,l) = 1.0e0 270 continue 280 continue 290 continue 300 continue c c if it is required, generate v. c if (.not.wantv) go to 350 do 340 ll = 1, p l = p - ll + 1 lp1 = l + 1 if (l .gt. nrt) go to 320 if (e(l) .eq. 0.0e0) go to 320 do 310 j = lp1, p t = -sdot(p-l,v(lp1,l),1,v(lp1,j),1)/v(lp1,l) call saxpy(p-l,t,v(lp1,l),1,v(lp1,j),1) 310 continue 320 continue do 330 i = 1, p v(i,l) = 0.0e0 330 continue v(l,l) = 1.0e0 340 continue 350 continue c c main iteration loop for the singular values. c mm = m iter = 0 360 continue c c quit if all the singular values have been found. c c ...exit if (m .eq. 0) go to 620 c c if too many iterations have been performed, set c flag and return. c if (iter .lt. maxit) go to 370 info = m c ......exit go to 620 370 continue c c this section of the program inspects for c negligible elements in the s and e arrays. on c completion the variables kase and l are set as follows. c c kase = 1 if s(m) and e(l-1) are negligible and l.lt.m c kase = 2 if s(l) is negligible and l.lt.m c kase = 3 if e(l-1) is negligible, l.lt.m, and c s(l), ..., s(m) are not negligible (qr step). c kase = 4 if e(m-1) is negligible (convergence). c do 390 ll = 1, m l = m - ll c ...exit if (l .eq. 0) go to 400 test = abs(s(l)) + abs(s(l+1)) ztest = test + abs(e(l)) if (ztest .ne. test) go to 380 e(l) = 0.0e0 c ......exit go to 400 380 continue 390 continue 400 continue if (l .ne. m - 1) go to 410 kase = 4 go to 480 410 continue lp1 = l + 1 mp1 = m + 1 do 430 lls = lp1, mp1 ls = m - lls + lp1 c ...exit if (ls .eq. l) go to 440 test = 0.0e0 if (ls .ne. m) test = test + abs(e(ls)) if (ls .ne. l + 1) test = test + abs(e(ls-1)) ztest = test + abs(s(ls)) if (ztest .ne. test) go to 420 s(ls) = 0.0e0 c ......exit go to 440 420 continue 430 continue 440 continue if (ls .ne. l) go to 450 kase = 3 go to 470 450 continue if (ls .ne. m) go to 460 kase = 1 go to 470 460 continue kase = 2 l = ls 470 continue 480 continue l = l + 1 c c perform the task indicated by kase. c go to (490,520,540,570), kase c c deflate negligible s(m). c 490 continue mm1 = m - 1 f = e(m-1) e(m-1) = 0.0e0 do 510 kk = l, mm1 k = mm1 - kk + l t1 = s(k) call srotg(t1,f,cs,sn) s(k) = t1 if (k .eq. l) go to 500 f = -sn*e(k-1) e(k-1) = cs*e(k-1) 500 continue if (wantv) call srot(p,v(1,k),1,v(1,m),1,cs,sn) 510 continue go to 610 c c split at negligible s(l). c 520 continue f = e(l-1) e(l-1) = 0.0e0 do 530 k = l, m t1 = s(k) call srotg(t1,f,cs,sn) s(k) = t1 f = -sn*e(k) e(k) = cs*e(k) if (wantu) call srot(n,u(1,k),1,u(1,l-1),1,cs,sn) 530 continue go to 610 c c perform one qr step. c 540 continue c c calculate the shift. c scale = amax1(abs(s(m)),abs(s(m-1)),abs(e(m-1)),abs(s(l)), * abs(e(l))) sm = s(m)/scale smm1 = s(m-1)/scale emm1 = e(m-1)/scale sl = s(l)/scale el = e(l)/scale b = ((smm1 + sm)*(smm1 - sm) + emm1**2)/2.0e0 c = (sm*emm1)**2 shift = 0.0e0 if (b .eq. 0.0e0 .and. c .eq. 0.0e0) go to 550 shift = sqrt(b**2+c) if (b .lt. 0.0e0) shift = -shift shift = c/(b + shift) 550 continue f = (sl + sm)*(sl - sm) + shift g = sl*el c c chase zeros. c mm1 = m - 1 do 560 k = l, mm1 call srotg(f,g,cs,sn) if (k .ne. l) e(k-1) = f f = cs*s(k) + sn*e(k) e(k) = cs*e(k) - sn*s(k) g = sn*s(k+1) s(k+1) = cs*s(k+1) if (wantv) call srot(p,v(1,k),1,v(1,k+1),1,cs,sn) call srotg(f,g,cs,sn) s(k) = f f = cs*e(k) + sn*s(k+1) s(k+1) = -sn*e(k) + cs*s(k+1) g = sn*e(k+1) e(k+1) = cs*e(k+1) if (wantu .and. k .lt. n) * call srot(n,u(1,k),1,u(1,k+1),1,cs,sn) 560 continue e(m-1) = f iter = iter + 1 go to 610 c c convergence. c 570 continue c c make the singular value positive. c if (s(l) .ge. 0.0e0) go to 580 s(l) = -s(l) if (wantv) call sscal(p,-1.0e0,v(1,l),1) 580 continue c c order the singular value. c 590 if (l .eq. mm) go to 600 c ...exit if (s(l) .ge. s(l+1)) go to 600 t = s(l) s(l) = s(l+1) s(l+1) = t if (wantv .and. l .lt. p) * call sswap(p,v(1,l),1,v(1,l+1),1) if (wantu .and. l .lt. n) * call sswap(n,u(1,l),1,u(1,l+1),1) l = l + 1 go to 590 600 continue iter = 0 m = m - 1 610 continue go to 360 620 continue return end